If it's not what You are looking for type in the equation solver your own equation and let us solve it.
55x^2+1280x+6400=0
a = 55; b = 1280; c = +6400;
Δ = b2-4ac
Δ = 12802-4·55·6400
Δ = 230400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{230400}=480$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1280)-480}{2*55}=\frac{-1760}{110} =-16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1280)+480}{2*55}=\frac{-800}{110} =-7+3/11 $
| 3x/6=132 | | 0.25x+4=5 | | 17x-5=10x+2x-10 | | 7x-4=3x+3 | | (x+1)^3-x^2(x+3)=2 | | 5x-5=13-61 | | 0.5(16x–6)=2 | | -6.4-5x=17.6 | | 204x-12x^2=0 | | F(x)=-1.5x+4.5 | | 0.66x=20 | | 25c=3 | | 23x-1.83=17x+0.27 | | 9.2x-43.7=-36.8 | | 3y=2y+18 | | 8x(5)=120 | | 9.2(x-4.72)=-36.8 | | (x+7)+30=47 | | 13+2k=3k+4(4k-3) | | x+0.1x=514900 | | 0=24-12k | | (x2+2x+3)1/2=(2x+5) | | 7/4=30/x | | 4x+3/5=7-2x | | 5/5=y/12 | | 2/9(x+3)=4x-7 | | Y=-(4/9)x-8 | | 3x×2+10x=8 | | 2x+(4x-10)=180 | | 3.1-0.7z=8.2 | | 5x/2+2/2=3x | | x+4/x-3=2 |